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Abstract

This paper extends the applicability of a new stress analysis method towards the accurate determination of the
detailed stress distributions in angle-ply laminated plates subjected to cylindrical bending. As far as simply
supported plates are concerned, this problem has an exact elasticity solution. Here however a simpler, two-

dimensional, shear deformable, plate model is employed which, accompanied with an appropriate set of through-
thickness shape functions, makes the new stress analysis method very accurate. Hence, the existing exact elasticity
solution is used only for a further veri®cation of the reliability of the new method, which is then used for a more

detailed stress analysis study of certain monoclinic and angle-ply laminated plates subjected to realistic edge
boundary conditions. It is also shown that the corresponding stress analysis of cross-ply laminated plates subjected
to cylindrical bending is a particular case of the present analysis. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a short series of recent publications, Soldatos and Watson (1997a, 1997b, 1997c) proposed a new
method for the accurate stress analysis of laminated composite structural elements. The method is based
on a successful speci®cation of the shape functions involved in a general, two-dimensional, plate
(Soldatos, 1993a, 1993b, 1995) or shell (Soldatos and Timarci, 1993; Timarci and Soldatos, 1995) model,
in a manner that represents very accurately the three-dimensional elasticity solution (if any) of a
corresponding simply supported structural element (e.g., Pagano, 1969, 1970; Srinivas and Rao, 1970;
Ye and Soldatos, 1994; Soldatos and Ye, 1995). Hence, away of the element edges, the stress prediction
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is mainly in¯uenced by the action of these shape functions whereas it is the boundary condition applied
on the solution of the plate or shell governing equations that mainly dictates the stress distribution near
the edges.

For instance, the shape functions involved in (Soldatos and Watson, 1997b, 1997c) were determined
in such an accurate manner that the chosen one-dimensional beam and two-dimensional plate models,
respectively, were capable to represent exactly the corresponding elasticity solutions (Pagano, 1969;
Srinivas and Rao, 1970) for simply supported edges. At this point, one should also give credit to
Levinson's (1984) similar but earlier attempt which, though resulted in describing a linearly elasticity
problem by means of non-linear di�erential equations (see also Soldatos and Watson, (1997a)), it also
achieved to get the corresponding elasticity solution (Pagano, 1969) for simply supported edges. Though
very accurate when dealing with other sets of edge boundary conditions however, this new stress
analysis method (Soldatos and Watson, 1997b, 1997c) is still approximate. Apart the set of the
boundary conditions employed in this respect there are also several other factors that can a�ect the level
of the method's accuracy, which may therefore vary. Such factors are the geometrical characteristics of
the structural element, its material properties and the stacking pattern, the type of the problem
considered (static, dynamic, etc.) and form of the applied external loading as well as the degree of
approximation involved during the development of the two-dimensional plate or shell theory employed.

It should be understood, in this respect, that there is not a unique choice of shape functions that can
accommodate satisfactorily a change to all of these factors. On the contrary, a change of any single one
of them may well require the determination and use of a di�erent set of shape functions. It appears
therefore that further relevant developments, as well as the improvement of the method itself, are based
on the formation of a catalogue containing sets of such shape functions each one of which will apply to
a certain type or to a certain class of particular problems. The formation of such a catalogue should
evidently start with structural elements that have relatively simple material and geometrical
characteristics and could gradually continue towards single (or even assemblies of) structural elements
the corresponding characteristics of which present an increasing degree of complexity. Being the ®rst
papers that made use of this new method, however, all of Soldatos and Watson, (1997a, 1997b, 1997c)
dealt with relatively simple cases of straight beams or rectangular plates made of one or more specially
orthotropic layers (Jones, 1975).

In more detail, Soldatos and Watson, (1997a) employed the general shear deformable plate theory,
which is termed as the general ®ve-degrees-of-freedom plate theory (G5DOFPT) and makes use of two
shape functions only. On the other hand, both (Soldatos and Watson, 1997b, 1997c) were based on a
corresponding plate theory which, by making use of six relevant degrees of freedom (G6DOFPT),
accounts further for the e�ects of transverse normal deformation thus making use of three shape
functions. It is only the later publication (Soldatos and Watson, 1997c), however, that outlines the
manner in which all of the three shape functions involved in the G6DOFPT can be determined though
relevant numerical results were not presented.

Soldatos and Watson (1997a) applied the method in connection with the cylindrical bending of cross-
ply laminated plates (Pagano, 1969) in which the plane strain considerations involved necessitate the
determination and use of one shape function only. In this respect, the analysis followed by Soldatos and
Watson (1997a) was also found suitable for the accurate prediction of stresses in cross-ply laminated,
shear deformable, beams subjected to di�erent sets of edge boundary conditions. Based on these plane
strain considerations, a more accurate investigation of the in¯uence that the edge boundary conditions
have on the stress distributions in cross-ply laminated beams (plates in cylindrical bending) was then
performed by Soldatos and Watson (1997b, 1997c). However, the incorporation of the e�ects of both
the transverse shear and the transverse normal deformation necessitated the determination and use of
two shape functions for the numerical examples considered by Soldatos and Watson (1997b, 1997c).

The purpose of the present paper is to extend the applicability of the method towards the accurate
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determination of stresses in plates that are made of generally orthotropic or even monoclinic elastic
layers (Jones, 1975) and are subjected to cylindrical bending conditions. Employing the steps followed
by Soldatos and Watson (1997a), however in which the plate was made by specially orthotropic layers,
the present investigation is based on the cylindrical bending problem of angle-ply laminated, simply
supported plates, the exact elasticity solution of which is due to Pagano (1970). Despite the plane strain
considerations involved, and in contrast with the corresponding solution that holds for cross-ply
laminates (Pagano, 1969), both the in-plane displacement components are non-zero in this case, due to
the monoclinic-type material arrangement. Hence, dependent on whether the G5DOFPT (Soldatos and
Watson, 1997a) or its advanced analogue (G6DOFPT) that also accounts for the e�ects of transverse
normal deformation (Soldatos and Watson, 1997c) is employed, there is a need for the determination of
two or three shape functions, respectively. Among these two alternative plate models, this paper
employs the relatively simpler but still very accurate one (G5DOFPT).

2. Cylindrical bending of angle-ply plates: the G5DOFPT model

Consider an elastic plate of thickness h and assume that its middle plane lies on the Oxy plane of a
Cartesian co-ordinate system Oxyz (the positive Oz axis is directed upwards). Consider further that the
plate is of in®nite extent in the y-direction, while it has a constant length, L, in the x-direction. Assume
further that the plate is made of an arbitrary number, N, of monoclinic, linearly elastic layers and is
subjected to the loading,

q�x� � qmsin�pmx�, pm � mp=L, m � 1,2, . . . �1�
which acts normally and upwards on its top lateral plane, z � h=2: This would be understood as being a
simple harmonic in the corresponding Fourier sine-series expansion of any relevant loading distribution.
Denote ®nally with U, V and W the plate displacement components along the x-, y- and z-directions,
respectively, and employ the usual notation for the corresponding strain and stress components (see Eqs.
(5), below).

Due to the o�-axis material con®guration (angle-ply lay-up), all the displacement, strain and stress
components take non-zero values everywhere throughout the plate. Due however to the symmetries
involved in both the geometrical and the loading characteristics, all these quantities are assumed
independent of the y parameter and, therefore, all their partial derivatives with respect to y are zero.
For this cylindrical bending problem, there is an exact, three-dimensional elasticity solution (Pagano,
1970) that holds if the following set of boundary conditions are imposed on both edges �x � 0, L ) of
the plate:

sx � txy �W � 0: �2�
As already mentioned, however, the present analysis is based on the two-dimensional G5DOFPT, a
brief but detailed description of which is outlined in by Soldatos and Watson (1997a). It is denoted at
this point that the two-dimensional analogue (see Eqs. (14) below) of the set of boundary conditions (2)
is clearly the one that is usually termed as the SS4 set of simply supported edge boundary conditions. In
a close connection with the process followed by Soldatos and Watson (1997a), however, that SS4 set
will be considered in this study for comparison purposes only with corresponding stress analysis results
based on the aforementioned exact elasticity solution (Pagano 1970).

In the particular case that the elastic plate is made of one or more specially orthotropic layers (cross-
ply lay-up) the V displacement component also vanishes. This is the case in which the corresponding
exact, plane strain elasticity solution (Pagano, 1969) holds if the following set of boundary conditions
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are imposed on both edges, x � 0, L:

sx �W � 0: �3�

It is precisely this problem to which the present stress analysis method has already been applied,
successfully, by Soldatos and Watson (1997a) on the basis of the G5DOFPT, though the principal
interest there was also focused to the in¯uence of the di�erent sets of edge boundary conditions. This
discussion makes clear that the cylindrical bending problem of cross-ply plates (Pagano, 1969) is
essentially a particular case of the more general problem considered by Pagano (1970). It should
therefore be expected that, in precisely the same context, the analysis and results presented by Soldatos
and Watson (1997a) should be obtained as a particular case of the present study.

Under these considerations, the present needs of the G5DOFPT suggest that the stress±strain
relations in the kth layer of the plate �k � 1,2, . . . ,N� should be given as follows,�

s�k�
	
�
h
Q
�k�
1

i
feg,

�
t�k�

	
�
h
Q
�k�
2

i
fgg �4�

where,

fsgT� fsx,sy,txyg, ftgT� ftxz,tyzg

fegT� fex,ey,gxyg, fggT� fgxz,yyzg �5�

Moreover, it is,

�Q1 � �
24Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

35, �Q2 � �
�
Q55 Q45

Q45 Q44

�
, �6�

where Qij�i,j � 1,2, . . . ,6� denote the appropriate reduced elastic sti�nesses (Jones 1975).
Due to the symmetries involved in this cylindrical bending problem, the displacement approximation

of the G5DOFPT is simpli®ed as follows:

U�x,z� � u�x� ÿ zw,x�x� � j1�z�u1�x�,

V�x,z� � v�x� � j2�z�v1�x�,

W�x,z� � w�x�, �7�

but still contains all the ®ve unknown degrees of freedom, u, v, w, u1, and v1, and therefore also involves
both the shape functions, j1�z� and j2�z�: Upon applying the kinematic relations of three-dimensional
elasticity to the displacement approximation (7), one obtains the following approximate strain ®eld:

feg � fecg � zfkcg � �F�z��fkag, fgg � �j 0�z���eag 	, �8�

where,

feg � � ex ey gxy
�T
, fecg � � u,x 0 v,x

�T
, fkcg � �ÿw,xx 0 0

�T
,

X.-Ping Shu, K.P. Soldatos / International Journal of Solids and Structures 37 (2000) 4289±43074292



fkag � � u1,x 0 v1,x 0
�T
, fgg �

�
gxz gyz

�T
,
�
ecg
	 � � u1 v1

�T
,

�
F�z�� �

24j1�z� 0 0 0
0 0 0 j2�z�
0 j1�z� j2�z� 0

35, �
j 0�z�� � �j 01�z� 0

0 j 02�z�
�
, �9�

and a prime denotes ordinary di�erentiation with respect to z.
Moreover, the equations of equilibrium of the G5DOFPT are simpli®ed as follows:

Nx,x � 0, Nxy,x � 0,

Mx,xx � ÿq�x�, Ma
x,x ÿQa

x � 0, Ma
yx,x ÿQa

y � 0, �10�

where the force and moment resultants are still de®ned as follows:

ÿ
Nx,Nxy

� � �h=2
ÿh=2
�sx,txy � dz,

ÿ
Mx,Mxy

� � �h=2
ÿh=2
�sx,txy �z dz,

ÿ
Ma

x,M
a
yx

� � �h=2
ÿh=2

ÿ
sxj1�z�,txyj2�z�

�
dz,

ÿ
Qa

x,Q
a
y

� � �h=2
ÿh=2

ÿ
txzj 01�z�,tyzj 02�z�

�
dz: �11�

These de®nitions, in connection with Eqs. (6), (8) and (9), convert the equilibrium Eqs. (10) into the
following form,

A11u,xx � A16v,xx � B111u1,xx � B162v1,xx ÿ B11w,xxx � 0,

A16u,xx � A66v,xx � B161u1,xx � B662v1,xx ÿ B16w,xxx � 0,

B11u,xxx � B16v,xxx �D111u1,xxx �D162v1,xxx ÿD11wxxx � ÿq�x�,

B111u,xx � B161v,xx �D1111u1,xx �D1612v1,xx ÿ A5511u1 ÿ A4512v1 ÿD111w,xxx � 0,

B162u,xx � B662v,xx �D1612u1,xx �D6622v1,xx ÿ A4512u1 ÿ A4422v1 ÿD162w,xxx � 0, �12�

where the stretching, coupling and bending rigidities are quoted from the following de®nitions (Timarci
and Soldatos 1995):

Aij �
�h=2
ÿh=2

Q
�k�
ij dz, Aijlm �

�h=2
ÿh=2

Q
�k�
ij j 0lj

0
m dz, Bij �

�h=2
ÿh=2

Q
�k�
ij z dz, Bijl �

�h=2
ÿh=2

Q
�k�
ij jl dz,
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Dij �
�h=2
ÿh=2

Q
�k�
ij z2 dz, Dijl �

�h=2
ÿh=2

Q
�k�
ij jlz dz, Dijlm �

�h=2
ÿh=2

Q
�k�
ij jljm dz, �13�

by assigning appropriate indices.
Eq. (12) form a twelfth-order set of ®ve simultaneous ordinary di�erential equations which, for a

given appropriate set of the shape functions involved, can be solved for the ®ve unknown displacement
functions. Such an appropriate set of shape functions will be determined in the next section whereas the
general solution of Eq. (12) will be obtained in Section 4. There, the manner will be further shown in
which this solution can be associated to any set of boundary conditions that can be imposed on the two
edges �x � 0,L� of the plate. Among the many di�erent sets of such boundary conditions, it is however
of particular interest to consider separately the following simply supported (SS4) set.

Nx � Nxy � w �Mx �Ma
x �Ma

yx � 0: �14�

Upon taking the de®nitions (11) into consideration, this can be clearly shown to be the two-dimensional
analogue of the corresponding three-dimensional set (2) used by Pagano (1970).

The SS4 set of boundary conditions (14) is satis®ed exactly by a displacement choice of the form,

�u,u1,v,v1� � �A,B,C,D�cos�pmx�, w � E sin�pmx�: �15�
Moreover, it further satis®es exactly the set of the di�erential equations (12) in the sense that it converts
it into the following set of simultaneous algebraic equations:266664

A11p
2
m A16p

2
m B111p

2
m B162p

2
m ÿB11p

3
m

A66p
2
m B161p

2
m B662p

2
m ÿB16p

3
m

D1111p
2
m � A5511 D1612p

2
m � A4512 ÿD111p

3
m

Symmetric D6622p
2
m � A4422 ÿD162p

3
m

D11p
4
m

377775
8>>>><>>>>:
A
C
B
D
E

9>>>>=>>>>; �
8>>>><>>>>:
0
0
0
0
qm

9>>>>=>>>>;: �16�

For any given set of shape functions j1�z� and j2�z�, the integrations denoted in Eq. (13) can be
performed either analytically or numerically. Hence, upon evaluating all the rigidities appearing in the
algebraic Eq. (16), its unique solution will provide the values of the unknown constant coe�cients A, B,
C, D and E and, through Eqs. (15), (7), (8) and (4), the through-thickness distributions of the
displacements, strains, and stresses. Hence, the main concern in accurately predicting these through-
thickness distributions is the manner in which an appropriate set of shape functions j1�z� and j2�z� is
determined.

3. Shape functions for cylindrical bending of angle-ply plates

Since the G5DOFPT neglects the e�ects of the transverse normal deformation, j1�z� and j2�z� are
determined in this section by making use of the ®rst and second of the three-dimensional equations of
equilibrium only. For the cylindrical bending of angle-ply laminated plates, these equations are
simpli®ed as follows:

sx,x � txz,z � 0, txy,x � tyz,z � 0: �17�
Using Hooke's law (6) in connection with Eqs. (8), (9) and (15), (17) yields the following fourth-order
set of simultaneous ordinary di�erential equations,
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Q
�k�
55 F

�k�
1,zz �Q

�k�
45 F

�k�
2,zz ÿQ

�k�
11 p

2
mF
�k�
1 ÿQ

�k�
16 p

2
mF
�k�
2 � Q

�k�
11 p

2
m�Aÿ zEpm� �Q

�k�
16 Cp

2
m, �18a�

Q
�k�
45 F

�k�
1,zz �Q

�k�
44 F

�k�
2,zz ÿQ

�k�
16 p

2
mF
�k�
1 ÿQ

�k�
66 p

2
mF
�k�
2 � Q

�k�
16 p

2
m�Aÿ zEpm� �Q

�k�
66 Cp

2
m, �18b�

where,

F�k�1 �z� � Bj�k�1 �z�, F�k�2 �z� � Dj�k�2 �z�: �19�
Here, the superscript (k ) is associated with the shape functions in order to make it clear that, in general,
their distribution changes from layer to layer. It may be of interest to note that in the particular case of
a special orthotropic layer �Q�k�45 � Q

�k�
16 � 0� the set of di�erential equations (18) converts into two,

uncoupled, second-order ordinary di�erential equations. Eq. (18a) takes then the form of the single,
second-order, di�erential equation solved by Soldatos and Watson (1997a) for the determination of the
single shape function needed when the cylindrical bending of cross-ply laminates is studied.

The general solution of Eq. (18) is given as follows �k � 1,2, . . . ,N):

F�k�1 �z� �
X4
i�1

C
�k�
i ea

�k �
i

z � Epmzÿ A, �20a�

F�k�2 �z� �
X4
i�1

Q
�k�
55

�
a�k�i

�2
ÿQ�k�11 p

2
m

Q
�k�
16 p

2
m ÿQ

�k�
45

�
a�k�i

�2C �k�i ea
�k �
i
z ÿ C �20b�

where C
�k�
i represent four arbitrary constants of integration in the kth layer. The constants a�k�i �i �

1,2,3,4� are the four roots of the following quartic algebraic equation:�
Q
�k�
44 Q

�k�
55 ÿ

�
Q
�k�
45

�2�
a4 ÿ

�
Q
�k�
11 Q

�k�
44 �Q

�k�
66 Q

�k�
55 ÿ 2Q

�k�
16 Q

�k�
45

�
p2ma

2 �
�
Q
�k�
11 Q

�k�
66 ÿ

�
Q
�k�
16

�2�
p4m

� 0, �21�

and, in general, di�er from layer to layer.
It is of interest to further note that in the particular case of a special orthotropic layer �Q�k�45 � Q

�k�
16 �

0� the four roots of Eq. (21), which is quadratic in a2, are as follows:

a�k�1,2 �2pm

����������
Q
�k�
11

Q
�k�
55

vuut , a�k�3,4 �2pm

����������
Q
�k�
66

Q
�k�
44

vuut : �22�

With Eq. (18) becoming uncoupled in that case, the two former of these roots are only associated with
F�k�1 �z�, whereas the two later roots are associated with F�k�2 �z�: This observations clearly show that the
single shape function obtained by Soldatos and Watson (1997a) is a particular case of the F�k�1 �z�
function given in Eq. (20a).

In a close relation to the corresponding results obtained by Soldatos and Watson (1997a), the right-
hand sides of both Eqs. (18) are entirely dependent upon the displacement ®eld of the classical plate
theory, whereas the left-hand sides depend on the corresponding additional ®eld that incorporates the
e�ects of transverse shear deformation. In this connection, the summation that appears in the right-hand
side of each one of Eqs. (20) represents the complementary solution to the corresponding of the Eq. (18)
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whereas the remaining terms represent a particular integral. The interpretation of these results is
therefore entirely analogous to the corresponding interpretation detailed by Soldatos and Watson
(1997a).

In more detail, these later terms, which are all cancelled by setting A � C � E � 0, eliminate the
inaccuracies superposed onto the solution of the equilibrium equation (17) by the displacement ®eld of
the classical plate theory. This is further clari®ed by the fact that, with a choice of the form (20), Eqs.
(18) and therefore their equivalent elasticity Eq. (17) are satis®ed regardless of the values of all the ®ve
unknown constants (A, B, C, D and E ). As a result, for the cylindrical bending of simply supported,
angle-ply plates, values can initially be assigned to all these unknown constants in an almost arbitrary
manner. In doing so, the only essential requirement is that non-zero values should be assigned to both B
and D, a nulli®cation of which is equivalent to neglecting the e�ects of the transverse shear deformation.

Hence, provided that non-zero values are assigned to both B and D, any set of shape functions F1�z�
and F2�z� produced by means of Eq. (20) exactly satis®es Eq. (17) of three-dimensional elasticity for this
particular cylindrical bending problem of shear deformable, simply supported, angle-ply laminated
plates. Despite that there is thus a complete freedom in choosing the values of all ®ve of A, B, C, D and
E, some convenient choice to four of them is made by employing the physical role that u, v, u1, and v1
are commonly required to play in G5DOFT. Namely, that u, v represent the in-plane displacements on
the plate middle-plane �z � 0� whereas u1, and v1 depict the values of the transverse shear strains yxz and
yyz, respectively, on that plane (Soldatos and Watson, 1997a). These requirements yield the following
relationships,

A �
X4
i�1

C
�mp�
i , C �

X4
i�1

Q
�mp�
55

�
a�mp�
i

�2
ÿQ�mp�

11 p2m

Q
�mp�
16 p2m ÿQ

�mp�
45

�
a�mp�
i

�2C �mp�
i ,

D �
X4
i�1

Q
�mp�
55

�
a�mp�
i

�2
ÿQ�mp�

11 p2m

Q
�mp�
16 p2m ÿQ

�mp�
45

�
a�mp�
i

�2a�mp�
i C

�mp�
i ,

E � 1

pm

 
Bÿ

X4
i�1

a�mp�
i C

�mp�
i

!
: �23�

Here, B is chosen to be the non-zero proportionality factor that, since its value leaves the ®nal
numerical results una�ected, can be left undetermined or set equal to unity without loss of generality
(Soldatos and Watson 1997a). The index `mp' indicates quantities that are associated with the layer that
contains the plate middle-plane. In the particular case in which it coincides with a plate material
interface, any one of the two layers bonded to that interface could be chosen to play the role of that
`middle-plane layer'.

For an N-layered plate, however, there are still 4N additional unknown constants to be determined,
namely the 4N arbitrary constants of integration, C

�k�
i �i � 1,2,3,4; k � 1,2, . . . ,N �: These will be

determined by means of the 4�Nÿ 1� continuity conditions employed on the Nÿ 1 material interfaces of
the laminated plate considered and the four zero shear traction boundary conditions speci®ed on the
plate lateral planes. In more detail, upon requiring continuity of the in-plane displacement components,
U�x,z� and V�x,z�, at the kth material interface, z � zk, of the laminate, one obtains �k � 1,2, . . . ,Nÿ 1),
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F�k�1 �zk � ÿ F�k�1�2 �zk � � 0, F�k�2 �zk � ÿ F�k�1�2 �zk � � 0: �24�
Upon requiring continuity of the interlaminar shear stress at the same interface, one obtains further
�k � 1,2, . . . ,Nÿ 1),

Q
�k�
55 F

�k�
1,z�zk � �Q

�k�
45 F

�k�
2,z�zk � ÿQ

�k�1�
55 F�k�1�1,z �zk � ÿQ

�kÿ1�
45 F�k�1�2,z �zk � � 0,

Q
�k�
45 F

�k�
1,z�zk � �Q

�k�
44 F

�k�
2,z�zk � ÿQ

�k�1�
45 F�k�1�1,z �zk � ÿQ

�kÿ1�
44 F�k�1�2,z �zk � � 0: �25�

A requirement of zero shear tractions on the plate lateral planes, z �2h=2, yields ®nally,

Q
�1�
55 F

�1�
1,z� ÿ h=2� �Q

�1�
45 F

�1�
2,z� ÿ h=2� � 0,

Q
�1�
45 F

�1�
1,z� ÿ h=2� �Q

�1�
44 F

�1�
2,z� ÿ h=2� � 0,

Q
�N�
55 F�N�1,z �h=2� �Q

�N�
45 F�N�2,z �h=2� � 0,

Q
�N�
45 F�N�1,z �h=2� �Q

�N�
44 F�N�2,z �h=2� � 0: �26�

Eqs. (24)±(26) form a set of 4N linear algebraic equations, the solution of which will determine the
numerical values of the same number of unknowns C

�k�
i �i � 1,2,3,4; k � 1,2, . . . ,N �:

4. Angle-ply plates subjected to general boundary condition

Regardless of the particular form of the shape functions employed, the general solution of the
ordinary di�erential Eq. (12) can be written as follows:

u �
X4
i�1
�E1E7i � E2E8i � E5mi �Kie

mix � K9 � K10x� E5K8x
2 � A cos pmx,

v �
X4
i�1
�E3E7i � E4E8i � E6mi �Kie

mix � K11 � K12x� E6K8x
2 � C cos pmx,

u1 �
X4
i�1

E7iKie
mix � 2

C3A4422 ÿ C6A4512

A4422A5511 ÿ A2
4512

K8 � B cos pmx,

v1 �
X4
i�1

E8iKie
mix � 2

C6A5511 ÿ C3A4512

A4422A5511 ÿ A2
4512

K8 �D cos pmx,

w �
X4
i�1

Kie
mix � K5 � K6x� K7x

2 � 1

3
K8x

3 � E sin pmx, �27�
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where Ki �i � 1,2, . . . ,12� are arbitrary constants of integration to be determined when a set of edge
boundary conditions are speci®ed. Moreover, mi �i � 1,2,3,4� are the four roots of the following quartic
equation:

�C1C5C9 � C2C6C7 � C3C4C8 ÿ C1C6C8 ÿ C2C4C9 ÿ C3C5C7�m4

���C3C7 ÿ C1C9�A4422 � �C6C8 ÿ C5C9�A5511

��C9C2 � C9C4 ÿ C3C8 ÿ C6C7�A4512�m2 � C9

ÿ
A4422A5511 ÿ A2

4512

� � 0, �28�

where,

C1 � B111E1 � B161E3 �D1111, C2 � B111E2 � B161E4 �D1612,

C3 � B111E5 � B161E6 ÿD111, C4 � B162E1 � B662E3 �D1612,

C5 � B162E2 � B662E4 �D6622, C6 � B162E5 � B662E6 ÿD162,

C7 � B11E1 � B16E3 �D111, C8 � B11E2 � B16E4 �D162, C9 � B11E5 � B16E6 ÿD11, �29�

and,

E1 � A16B161 ÿ A66B111

A11A66 ÿ A2
16

, E2 � A16B662 ÿ A66B162

A11A66 ÿ A2
16

, E3 � A16B111 ÿ A11B161

A11A66 ÿ A2
16

,

E4 � A16B162 ÿ A11B662

A11A66 ÿ A2
16

, E5 � A66B11 ÿ A16B16

A11A66 ÿ A2
16

, E6 � A11B16 ÿ A16B11

A11A66 ÿ A2
16

,

E7i � C6

ÿ
C2m2i ÿ A4512

�ÿ C3

ÿ
C5m2i ÿ A4422

�ÿ
C1m2i ÿ A5511

�ÿ
C5m2i ÿ A4422

�ÿ ÿC2m2i ÿ A4512

�ÿ
C4m2i ÿ A4512

� ,

E8i � C3

ÿ
C4m2i ÿ A4512

�ÿ C6

ÿ
C1m2i ÿ A5511

�ÿ
C1m2i ÿ A5511

�ÿ
C5m2i ÿ A4422

�ÿ ÿC2m2i ÿ A4512

�ÿ
C4m2i ÿ A4512

� : �30�

The remaining constants, A, B, C, D and E, that appear in Eq. (28) are the coe�cients of terms that
represent particular integrals of the set of Eq. (12). As such, these terms are identical to the solution (15)
of the simply supported plate obtained by solving the linear algebraic system (16). In this respect, it is a
rather simple matter to show that, for simply supported plates, the set of SS4 edge boundary conditions
(14) yields zero values to all the arbitrary constants of integration, Ki �i � 1,2, . . . ,12�, thus leaving Eq.
(27) identical to Eq. (15). For plates subjected to a di�erent set of edge boundary conditions,
corresponding values to those constants are determined by applying that set of boundary conditions to
Eq. (27) and, then, by solving the resulting 12� 12 system of algebraic equations on the basis of a
standard numerical routine.
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5. Numerical results and discussion

In this section, the present analysis is initially applied to the cylindrical bending problem of angle-ply
laminated plates, both edges of which are subjected to the SS4 set of simply supported boundary
conditions (14). This case of simply supported plates is evidently used to test the reliability of the
analysis, by comparing its results against corresponding numerical results based on the existing exact
elasticity solution (Pagano, 1970). Hence, after the reliability of the method has successfully been tested,
two further cases of angle-ply plates subjected to di�erent sets of boundary conditions are considered,
presenting stress analysis results that are entirely new in the literature. These cases are: (i) both edges
rigidly clamped (CC plates), and (ii) one edge rigidly clamped and the other free of tractions (CF
plates). In this respect, the following boundary conditions are imposed:

at a clamped edge: u � v � w � w,x � u1 � v1 � 0,

at a free edge: Nx � Nxy �Mx �Mx,x �Ma
x �Ma

yx � 0: �31�

It could be mentioned that, in the particular case of cross-ply laminates and upon inverting the direction
of the applied loading, the present analysis produced identical results to those presented and discussed
by Soldatos and Watson (1997a).

All the numerical results shown in what follows are presented by means of the following non-
dimensional parameters:

�U � UET=qmL, �w � 100wETh
3=qmL

4,

ÿ
�sx, �sy,�txy

� � �sx,sy,txy �h2=qmL2,

ÿ
�txz,�tyz

� � �txz,tyz �h=qmL, �32�

and refer to homogeneous generally orthotropic plates as well as to two-layered plates having a regular
antisymmetric angle-ply lay-up (Jones, 1975). The orthotropic material used in all of the applications
employed has the following elastic properties:

EL=ET � 25, GLT=ET � 0:5, GTT=ET � 0:2, vLT � vTT � 0:25, �33�
where the subscripts L and T denote properties associated with the longitudinal and the transverse ®bre
direction, respectively. The integer value m that characterises the particular harmonic employed in the
Fourier sine-series expansion of any loading distribution applied on the top lateral plane (Eq. (1)) is
assumed to be unity. The plate geometry is mainly determined by the ratio h=L � 0:25: This
characterises a very thick plate and, in conjunction with the high value of the sti�ness ratio EL=ET, is
considered to be an adequate test of the reliability of the method at least as far as simply supported
plates are concerned. However, some cases of thinner plates have also been considered.

For several values of both the thickness to axial length ratio and the angle, y, that the ®bres form
with the x-axis of a homogeneous SS4 plate, Table 1 presents the maximum values of the most
important displacement and stress parameters predicted by means of the present analysis. Table 1 also
compares these values with corresponding results that, based on the exact elasticity solution (Pagano,
1970), were tabulated by Ren (1986). Regardless of the ®bre orientation, these comparisons show an
excellent agreement of corresponding results which, as was expected, is particularly impressive in the
case of the very thin plates �h=L � 0:01). This is due to the fact that the transverse normal deformation
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is essentially negligible in thin plates. Hence, like the G5DOFPT that completely ignores the e�ects of
the transverse normal deformation, the exact elasticity solution predicts through-thickness displacement
and stress distributions that are practically either symmetric or antisymmetric with respect to the plate
middle-plane.

Even in the case of the very thick plates, in which the exact elasticity solution makes evident that the
transverse normal deformation matters, an extremely good agreement is observed between
corresponding numerical results, the relative discrepancy of which essentially never exceeds 3%. As an
exception to this observation, the maximum value of the bending stress, sx, might be made reference to,
for which the relative discrepancy of corresponding results for h=L � 0:25 and y � 158 is about 3.1%. It
should be mentioned however that this value is always between the corresponding minimum and
maximum values obtained by means of the exact elasticity �z �2h=2). Moreover, due to the fact that
the axial plate reinforcement is decreasing by increasing the value of y, this slight discrepancy also
decrease with increasing y: It is denoted in this respect, that in the case of a homogeneous plate made
by specially orthotropic material �y � 08� the corresponding relative discrepancy observed was as high as
4.5% (Soldatos and Watson, 1997a), though it did not exceed the engineering acceptable error (5%). It
should be ®nally emphasised that, regardless of the plate thickness, there is always an excellent
agreement between the corresponding transverse shear stress distributions, txz and tyz, obtained by
means of the present analysis and the exact elasticity solution.

The particularly good performance of the present analysis is further shown in Table 2, where
corresponding successful comparisons of complete through thickness stress distributions are performed
for the case of y � 158: These comparisons show that, apart a narrow zone around the plate middle
plane, in which however the stress values are small and therefore relatively less important, the above 3%
discrepancy barrier is not exceeded. Moreover, similarly good results are presented in Tables 3 and 4,
where corresponding comparisons to those shown in Tables 1 and 2, respectively, are performed for the
case of a two-layered antisymmetric angle-ply laminated plate subjected to SS4 conditions. Having thus
veri®ed the good performance of the method, all of the remaining results shown in what follows deal

Table 1

Normalised displacement and stress parameters for homogeneous SS4 plates

h/L y Exact Present

�w�L=2,0� �sx�L=2,ÿ h=2� �sx�L=2,h=2� �tyz (0,0) �txz (0, 0) �w (L/2, 0) �sx�L=2,2h=2� �tyz (0,0) �txz (0,0)

0.25 158 2.1089 ÿ0.8338 0.8810 ÿ0.1019 0.4353 2.1310 20:8537 ÿ0.1036 0.4360

308 2.6948 ÿ0.7926 0.8264 ÿ0.2127 0.4425 2.7230 20:8086 ÿ0.2160 0.4427

458 4.1681 ÿ0.7314 0.7497 ÿ0.3326 0.4535 4.2117 20:7422 ÿ0.3372 0.4533

608 7.8569 ÿ0.6671 0.6745 ÿ0.3975 0.4656 7.9382 20:6734 ÿ0.4025 0.4652

758 14.095 ÿ0.6353 0.6388 ÿ0.1809 0.4719 14.237 20:6397 ÿ0.1828 0.4714

0.10 158 0.8162 ÿ0.6560 0.6536 ÿ0.1170 0.4689 0.8178 20:6532 ÿ0.1173 0.4688

308 1.1498 ÿ0.6434 0.6445 ÿ0.2454 0.4705 1.1521 20:6444 ÿ0.2459 0.4705

458 2.1366 ÿ0.6312 0.6318 ÿ0.3884 0.4729 2.1408 20:6320 ÿ0.3892 0.4728

608 5.2662 ÿ0.6187 0.6189 ÿ0.4696 0.4753 5.2763 20:6193 ÿ0.4706 0.4752

758 11.324 ÿ0.6125 0.6126 ÿ0.1891 0.4765 11.345 20:6131 ÿ0.1895 0.4765

0.01 158 0.5629 ÿ0.6082 0.6082 ÿ0.1207 0.4772 0.5631 20:6084 ÿ0.1207 0.4774

308 0.8448 ÿ0.6080 0.6080 ÿ0.2531 0.4772 0.8452 20:6083 ÿ0.2532 0.4774

458 1.7277 ÿ0.6077 0.6077 ÿ0.4017 0.4770 1.7292 20:6082 ÿ0.4020 0.4774

608 4.7348 ÿ0.6068 0.6068 ÿ0.4871 0.4765 4.7448 20:6080 ÿ0.4881 0.4774

758 10.756 ÿ0.6056 0.6056 ÿ0.1903 0.4756 10.798 20:6080 ÿ0.1910 0.4774
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with two-layered plates having both their edges clamped or one edge clamped and the other free of
tractions.

Table 5 presents numerical values of normalised displacement and stresses at selected points within a
CC plate having a [308/ÿ308] lay-up. It should be noted that, due to the symmetries of the problem,
displacement and stresses at x=L and 1ÿ x=L have identical through-thickness distributions. Moreover,
due to the G5DOFPT considerations, they are also either symmetric or antisymmetric with respect to
the plate middle plane. Hence, numerical results are only presented for the left half of the top layer of
the CC plate. The fundamental di�erence observed between associated through-thickness displacement
and stress distributions in corresponding SS4 and CC cross-ply laminated plates (Soldatos and Watson,
1997a) becomes also evident in the present case that deals with angle-ply laminates. Due to their

Table 2

Through-thickness stress distributions in a SS4 homogeneous plate �h=L � 0:25, y � 158)

z/h Exact Present

�sx (L/2) �sy (L/2) �txy (L/2) �tyz (0) �txz (0) �sx (L/2) �sy (L/2) �txy (L/2) �tyz (0) �txz (0)

ÿ0.5 ÿ0.8338 ÿ0.0651 0.2022 0.0000 0.0000 ÿ0.8537 ÿ0.0667 0.2088 0.0000 0.0000

ÿ0.4 ÿ0.4868 ÿ0.0374 0.1151 ÿ0.0486 0.2027 ÿ0.4948 ÿ0.0386 0.1186 ÿ0.0502 0.2069

ÿ0.3 ÿ0.2809 ÿ0.0200 0.0645 ÿ0.0761 0.3205 ÿ0.2817 ÿ0.0219 0.0659 ÿ0.0784 0.3260

ÿ0.2 ÿ0.1550 ÿ0.0086 0.0347 ÿ0.0913 0.3875 ÿ0.1516 ÿ0.0118 0.0347 ÿ0.0938 0.3925

ÿ0.1 ÿ0.0730 ÿ0.0004 0.0161 ÿ0.0991 0.4227 ÿ0.0661 ÿ0.0051 0.0148 ÿ0.1014 0.4259

0.0 ÿ0.0087 0.0066 0.0022 ÿ0.1019 0.4353 0.0000 0.0000 0.0000 ÿ0.1036 0.4361

0.1 0.0570 0.0137 ÿ0.0121 ÿ0.1004 0.4280 0.0661 0.0051 ÿ0.0148 ÿ0.1014 0.4259

0.2 0.1444 0.0233 ÿ0.0320 ÿ0.0937 0.3942 0.1516 0.0118 ÿ0.0347 ÿ0.0938 0.3925

0.3 0.2798 0.0346 ÿ0.0642 ÿ0.0790 0.3323 0.2817 0.0219 ÿ0.0659 ÿ0.0784 0.3260

0.4 0.5034 0.0533 ÿ0.1192 ÿ0.0510 0.2123 0.4948 0.0386 ÿ0.1186 ÿ0.0502 0.2069

0.5 0.8810 0.0835 ÿ0.2140 0.0000 0.0000 0.8537 0.0667 ÿ0.2088 0.0000 0.0000

Table 3

Normalised displacement and stress parameters of SS4 two-layered plates �ÿy=y]

h=L y Exact Present

�w�L=2,0� �sx�L=2,ÿ h=2� �sx�L=2,h=2�) �tyz�0,0� �txz�0,0� �w�L=2,0� �sx�L=22h=2� �tyz�0,0� �txx�0,0�

0.25 158 2.662 ÿ0.9966 1.0439 ÿ0.0028 0.2884 2.688 21:0206 0.0000 0.2866

308 3.920 ÿ1.0141 1.0789 ÿ0.0057 0.2174 3.958 21:0661 0.0000 0.2143

458 6.287 ÿ0.9601 0.9798 ÿ0.0085 0.2513 6.346 20:9758 0.0000 0.2484

608 10.686 ÿ0.7876 0.7958 ÿ0.0096 0.3606 10.789 20:7962 0.0000 0.3589

758 14.966 ÿ0.6513 0.6548 ÿ0.0036 0.4589 15.115 20:6559 0.0000 0.4582

0.10 158 1.441 ÿ0.8700 0.8716 ÿ0.0005 0.2953 1.443 20:8719 0.0000 0.2931

308 2.530 ÿ0.9671 0.9682 ÿ0.0010 0.2107 2.535 20:9690 0.0000 0.2101

458 4.483 ÿ0.9150 0.9156 ÿ0.0016 0.2455 4.590 20:9166 0.0000 0.2450

608 8.512 ÿ0.7578 0.7580 ÿ0.0019 0.3641 8.528 20:7588 0.0000 0.3637

758 12.141 ÿ0.6278 0.6279 ÿ0.0007 0.4645 12.163 20:6284 0.0000 0.4644

0.01 158 1.205 ÿ0.8402 0.8402 0.0000 0.2945 1.206 20:8409 0.0000 0.2948

308 2.262 ÿ0.9485 0.9485 0.0000 0.2089 2.265 20:9498 0.0000 0.2091

458 4.249 ÿ0.9033 0.9033 0.0000 0.2436 4.258 20:9052 0.0000 0.2441

608 8.071 ÿ0.7488 0.7488 0.0000 0.3635 8.100 20:7515 0.0000 0.3648

758 11.555 ÿ0.6205 0.6205 0.0000 0.4636 11.603 20:6231 0.0000 0.4656
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Table 4

Through-thickness stress distributions in a SS4 two-layered plate �l=h � 0:25, [-158/158])

z/h Exact Present

�sx�L=2� �sy�L=2� �txy�L=2� �tyz�0� �txz�0� �sx�L=2� �sy�L=2� �txy�L=2� �tyz�0� �txz�0�

ÿ0.5 ÿ0.9966 ÿ0.0714 0.2026 0.0000 0.0000 ÿ1.0206 ÿ0.0783 0.2116 0.0000 0.0000

ÿ0.4 ÿ0.5491 ÿ0.0408 0.0935 ÿ0.0457 0.2373 ÿ0.5582 ÿ0.0421 0.0950 ÿ0.0467 0.2423

ÿ0.3 ÿ0.2579 ÿ0.0166 0.0206 ÿ0.0210 0.3612 ÿ0.2580 ÿ0.0185 0.0195 ÿ0.0640 0.3676

ÿ0.2 ÿ0.0371 0.0025 ÿ0.0346 ÿ0.0605 0.4066 ÿ0.0310 ÿ0.0008 ÿ0.0378 ÿ0.0609 0.4120

ÿ0.1 0.1785 0.0213 ÿ0.0892 ÿ0.0412 0.3851 0.1898 0.0166 ÿ0.0942 ÿ0.0403 0.3877

0.0 0.4529 0.0444 ÿ0.1597 ÿ0.0028 0.2884 0.4697 0.0385 ÿ0.1667 0.0000 0.2866

0.0 ÿ0.4716 ÿ0.0315 ÿ0.1684 ÿ0.0028 0.2884 ÿ0.4697 ÿ0.0385 ÿ0.1667 0.0000 0.2866

0.1 ÿ0.1949 ÿ0.0082 ÿ0.0970 0.0383 0.3906 ÿ0.1898 ÿ0.0166 ÿ0.0942 0.0403 0.3877

0.2 0.0262 0.0111 ÿ0.0408 0.0597 0.4166 0.0310 0.0008 ÿ0.0378 0.0609 0.4120

0.3 0.2570 0.0310 0.0170 0.0637 0.3732 0.2580 0.0185 0.0198 0.0640 0.3676

0.4 0.5660 0.0567 0.0943 0.0470 0.2470 0.5582 0.0421 0.0950 0.0467 0.2423

0.5 1.0439 0.0948 0.2148 0.0000 0.0000 1.0206 0.0783 0.2116 0.0000 0.0000

Table 5

Displacement and stress distributions in a CC two-layered plate �h=L � 0:25, [ÿ308/308])

z=h x=L � 0:0 0.1 0.2 0.3 0.4 0.5

�w 0.0000 0.4596 1.0633 1.5834 1.9323 2.0549

�sx 0.5 ÿ2.2604 ÿ0.2903 0.0246 0.2590 0.4098 0.4618

0.4 ÿ0.0536 ÿ0.2038 ÿ0.0454 0.0852 0.1694 0.1985

0.3 0.3708 ÿ0.1050 ÿ0.0384 0.0193 0.0562 0.0689

0.2 0.0338 0.0023 0.0012 ÿ0.0022 ÿ0.0050 ÿ0.0061
0.1 ÿ0.2083 0.1149 0.0365 ÿ0.0325 ÿ0.0774 ÿ0.0930
0.0 0.5376 0.2296 0.0286 ÿ0.1274 ÿ0.2269 ÿ0.2612

�sy 0.5 ÿ0.6993 ÿ0.0869 0.0081 0.0789 0.1245 0.1402

0.4 0.0023 ÿ0.0594 ÿ0.0143 0.0237 0.0481 0.0565

0.3 0.1323 ÿ0.0281 ÿ0.0117 0.0031 0.0125 0.0157

0.2 0.0200 0.0060 0.0012 ÿ0.0034 ÿ0.0066 ÿ0.0077
0.1 ÿ0.0587 0.0419 0.0125 ÿ0.0130 ÿ0.0295 ÿ0.0353
0.0 0.1842 0.0786 0.0098 ÿ0.0436 ÿ0.0777 ÿ0.0895

�txz 0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4 0.0000 0.2385 0.2067 0.1504 0.0791 0.0000

0.3 0.0000 0.3619 0.3131 0.2277 0.1198 0.0000

0.2 0.0000 0.3970 0.3427 0.2491 0.1310 0.0000

0.1 0.0000 0.3499 0.3007 0.2182 0.1147 0.0000

0.0 0.0000 0.2072 0.1756 0.1267 0.0664 0.0000
�U 0.5 0.0000 ÿ0.1404 ÿ0.1670 ÿ0.1421 ÿ0.0806 0.0000

0.4 0.0000 ÿ0.0722 ÿ0.0991 ÿ0.0886 ÿ0.0513 0.0000

0.3 0.0000 ÿ0.0438 ÿ0.0654 ÿ0.0600 ÿ0.0351 0.0000

0.2 0.0000 ÿ0.0342 ÿ0.0479 ÿ0.0431 ÿ0.0250 0.0000

0.1 0.0000 ÿ0.0257 ÿ0.0314 ÿ0.0269 ÿ0.0153 0.0000

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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trigonometric in-plane pattern (Eq. (15)), such through-thickness distributions in SS4 plates exhibit a
certain similarity with respect to x, with the value of the trigonometric term simply a�ecting their
magnitude only. On the contrary, the through-thickness displacement and stress distributions in a CC
plate are very strongly dependent on the value of the in-plane co-ordinate x=L:

For instance, the form of the bending stress distribution, sx, is similar to that presented in Fig. 1, for
x=L � 0:5, throughout the entire length of the SS4 plate, with an exception at the two edges of the plate
at which it is identically zero. Contrary to this, the through-thickness bending stress distribution at the
edges of a CC plate (solid line in Fig. 3) is highly non-linear, and takes particularly high values either
close to the lateral planes �z �2h=2� or near the material interface �z � 0). Away from the edges
�x=L > 0:1), the shape of the sx-distribution in a CC plate tends to gradually approach that of a
corresponding SS4 plate.

Similar observations may be detailed with regard to the corresponding through-thickness distributions
of the transverse shear stress txz (Figs. 2 and 4), although the through-thickness distributions exhibit
now a certain similarity, with respect, to x, even for CC plates. As has been also pointed out by
Soldatos and Watson (1997a), however, although the magnitude of the txz-distribution in a CC plate is
naturally increasing when approaching the clamped edge �txz � 0 at x=L � 0), the present G5DOFPT

Fig. 1. Bending stress distribution in a [308/ÿ308] SS plate.

Fig. 2. Transverse shear stress distribution in a [308/ÿ308] SS plate.
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theory erroneously predicts that txz suddenly becomes zero at that edge. This slight drawback, which
decreases and essentially vanishes by decreasing the plate thickness, is apparently due to the limitations
of the G5DOFPT. As was initially detailed by Soldatos and Watson (1997a) and veri®ed afterwards for
cross-ply laminates (Soldatos and Watson, 1997a, 1997b), an apparent way to improve this drawback,
which might be considerable in studying edge delamination, is to replace G5DOFPT with a theory that
also accounts for transverse normal deformation e�ects. Such a change of the plate theory which, for
the cylindrical bending problem of angle-ply laminated plates, would involve the appropriate
determination of more than two inter-related shape functions, is beyond the scope of the present study.

Table 6 presents numerical values of normalised displacement and stress distributions at equally
spaced points within CF plate having a [308/ÿ308] lay-up. Due to the G5DOFPT considerations, these
distributions occur in either symmetric or antisymmetric forms, with respect to the plate middle plane.
Hence, numerical results are only presented for the top layer of the CF plate. For this plate, associated
complete through-thickness distributions of bending and shear stresses are shown graphically in Figs. 5
and 6, respectively, using selected coordinate values across the plate length. In a close relation with the
corresponding observation made by Soldatos and Watson (1997a) for the cross-ply laminated CF plate,
the present solution varies rapidly to meet the boundary conditions imposed on the free edge of the

Fig. 3. Transverse shear stress distribution in a [308/ÿ308] CC plate.

Fig. 4. Transverse shear stress distribution in a [308/ÿ308] CC plate.
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angle-ply laminate in an almost point-by-point sense. In more detail, the bending stress is very large on
the outer planes of the clamped edge �x � 0), on which its value is almost three times higher than the
value that it takes at the edge of the corresponding, less ¯exible, CC plate (see Fig. 3). Similarly, in the
vicinity of the clamped edge �x=L � 0:1� the through-thickness maximum value of the transverse shear

Table 6

Displacement and stress distributions in a CF two-layered plate �h=L � 0:25, [ÿ308/308])

z=h x=l � 0:0 0.2 0.4 0.6 0.8 1.0

�w 0.0000 3.0330 7.6739 12.561 17.132 21.376

�sx 0.5 ÿ6.3025 ÿ1.7547 ÿ0.7753 ÿ0.1793 0.0300 0.0000

0.4 ÿ1.2682 ÿ1.2129 ÿ0.6082 ÿ0.2170 ÿ0.0417 0.0000

0.3 0.1900 ÿ0.5960 ÿ0.3140 ÿ0.1274 ÿ0.0348 0.0000

0.2 0.1217 0.0543 0.0323 0.0140 0.0042 0.0000

0.1 0.2456 0.7031 0.3676 0.1440 0.0361 0.0000

0.0 2.3547 1.3142 0.6264 0.1965 0.0200 0.0000

�sy 0.5 ÿ1.9371 ÿ0.5295 ÿ0.2337 ÿ0.0536 0.0094 0.0000

0.4 ÿ0.3359 ÿ0.3565 ÿ0.1801 ÿ0.0653 ÿ0.0133 0.0000

0.3 0.1187 ÿ0.1595 ÿ0.0857 ÿ0.0362 ÿ0.0107 0.0000

0.2 0.0872 0.0482 0.0253 0.0094 0.0020 0.0000

0.1 0.1239 0.2553 0.1325 0.0511 0.0123 0.0000

0.0 0.8066 0.4502 0.2146 0.0673 0.0068 0.0000

�txz 0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4 0.0000 0.4640 0.3370 0.1788 0.0507 0.0018

0.3 0.0000 0.7027 0.5099 0.2704 0.0765 0.0024

0.2 0.0000 0.7687 0.5570 0.2951 0.0832 0.0023

0.1 0.0000 0.6738 0.4870 0.2576 0.0722 0.0014

0.0 0.0000 0.3919 0.2807 0.1478 0.0406 ÿ0.0003
�U 0.5 0.0000 ÿ1.0102 ÿ1.4826 ÿ1.6550 ÿ1.6771 ÿ1.6692

0.4 0.0000 ÿ0.7307 ÿ1.1301 ÿ1.2944 ÿ1.3334 ÿ1.3352
0.3 0.0000 ÿ0.5281 ÿ0.8331 ÿ0.9632 ÿ0.9979 ÿ1.0013
0.2 0.0000 ÿ0.3617 ÿ0.5624 ÿ0.6458 ÿ0.6663 ÿ0.6676
0.1 0.0000 ÿ0.1975 ÿ0.2932 ÿ0.3293 ÿ0.3349 ÿ0.3338
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 5. Bending stress distribution in a [308/ÿ308] CF plate.
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stress is about twice as high as it is for the corresponding CC plate (see Figs. 4 and 6). Most
importantly, the zero bending stress boundary condition on the free edge �x � L� is satis®ed exactly, in a
point-by-point sense. This is not true with either of the transverse shear stress txz and tyz, the values of
which are however so small at x � L that should practically be considered as zero.

6. Conclusions

A new stress analysis method that was demonstrated by Soldatos and Watson (1997a) for the
cylindrical bending of cross-ply laminated plates has successfully been extended towards the accurate
determination of the detailed stress distributions in angle-ply laminated plates subjected to cylindrical
bending. Hence, the corresponding stress analysis presented by Soldatos and Watson (1997a) becomes a
particular case of the present analysis, which is also based on the considerations of the G5DOFPT.

For angle-ply laminated plates subjected to a certain set of simply supported edge boundary
conditions, the good performance of the present analysis has been veri®ed by means of successful
numerical comparisons performed with corresponding results based on the existing exact elasticity
solutions (Pagano, 1970; Ren, 1986). New results have however also been presented with regard to the
stress analysis of more realistically supported angle-ply laminated plates, namely for plates having one
edge rigidly clamped and the other either rigidly clamped or free of external tractions. It should be
noted, however, that the relevant analytical solution presented in Section 4 holds for any set of
variationally consistent boundary conditions applied at the plate edges. Hence, if needed, the presented
numerical analysis can successfully be repeated for other sets of edge boundary conditions, for which
corresponding numerical results can also be obtained with ease.

The numerical results and comparisons performed for thin and moderately thick plates have shown an
excellent performance of the present method. As far as thick plates are concerned �h=L � 0:25), the
method still performs very reliably despite the limitations of the G5DOFPT. It is expected that the
slight drawbacks observed (for thick plates only) may be improved by replacing the G5DOFPT with a
plate theory that takes transverse normal deformation e�ects into consideration, in the sense described
by Soldatos and Watson (1997b, 1997c) for the cylindrical bending of cross-ply laminates. It is denoted,
however, that the additional degree of freedom involved in such a case will introduce a third shape
function, which will be interconnected with both of the shape functions involved in the present analysis.

Fig. 6. Transverse shear stress distribution in a [308/ÿ308] CF plate.
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In such a case, the whole set of the three shape functions involved should appropriately be
redetermined.
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